

A Mini course on Dynamic Simulation (MATLAB and SIMULINK)

陳榮輝 中原大學化工系 e-mail:jason@wavenet.cycu.edu.tw http://wavenet.cycu.edu.tw/

(C) 2014 CPSE Lab.

¹ J. Chen

The MATLAB Product Family

Pioneers in interactive technical software

Dynamic Simulation

(C) 2014 CPSE Lab.

³ J. Chen

Example: Single-Variable Differential Equation

Objective: Solve differential mole balance on a CSTR using MATLAB integration routine.

Problem description: A CSTR initially filled in 2mol/L of A is started up with specified conditions of inlet concentration, inlet and outlet flow rates. The reactor volume and fluid density are considered to be constant.

(C) 2014 CPSE Lab.

⁵ J. Chen

Ordinary Differential Equations: IVP

$$\frac{dy(t)}{dt} = f(t, y(t)) \qquad \qquad y(t_0) = y_0$$

- MATLAB has several routines for numerical integration ode45, ode23, ode113, ode15s, ode23s, etc.
- Here we will introduce ode45 only.
- ode23 uses 2nd-order and ode45 uses 4th-order Runge-Kutta integration.

Example: Scalar ODE

(C) 2014 CPSE Lab.

⁷ J. Chen

Example 1: Scalar ODE

[t, y] = ode45 ('@fcn', [t0,tf], y0)

where

@fcn	is a string variable containing the name of the m-file for the derivatives.
tO	is the initial time
tf	is the final time
y0	is the initial condition vector for the state variables
t	a (column) vector of time
У	an array of state variables as a function of time

(C) 2014 CPSE Lab.

⁹ J. Chen

Example: Multivariable ODE

$$\frac{d^2\theta(t)}{dt^2} + \sin\theta(t) = 0$$

Def:
$$y_1(t) = \theta(t)$$

 $y_2(t) = \frac{d\theta(t)}{dt}$

$$\frac{dy_1(t)}{dt} = y_2(t)$$
$$\frac{dy_2(t)}{dt} = -\sin y_1(t)$$

The first important point to note is that y is a vector of 2 variables, y1 and y2

Also, dy is a vector of two differential equations associated with the 2 variables

Example: Multivariable ODE

Example: Rossler System

$\frac{dy_1}{dt} = -y_2(t) - y_3(t)$
$\frac{dy_2}{dt} = y_1(t) + ay_2(t)$
$\frac{dy_3}{dt} = b + y_3(t)(y_1(t) - c)$

a, b and c are problem parameters that are passed on the ode functions

```
function dy = rossler(t,y,a,b,c)
%ROSSLER Rossler system, parameterized.
dy = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];
```


Example: Rossler System

(C) 2014 CPSE Lab.


```
ts=0.001; %Sampling time
xk=zeros(2,1); e_1=0; u_1=0;
for k=1:1:2000
        time(k) = k*ts;
        yd(k)=0.50*sin(1*2*pi*k*ts);
        para=u 1;
        tSpan=[0 ts];
        [tt,xx]=ode45('PlantModel',tSpan,xk,[],para);
        xk = xx(length(xx),:);
        y(k)=xk(1);
        e(k)=yd(k)-y(k);de(k)=(e(k)-e_1)/ts;
        u(k)=20.0*e(k)+0.50*de(k);
        %Control limit
        if u(k) > 1.0, u(k) = 1.0; end
        if u(k) < 0.0, u(k) = 0.0; end
        u_1=u(k);e_1=e(k);
end
```

$$u(k) = u_s + k_p e(k) + k_i \sum_{i=0}^{k} e(i)t_s + \frac{k_d}{t_s} (e(k) - e(k-1))$$

»M_DigitPID.m & M_Plant.m

(C) 2014 CPSE Lab.

2014/10/12 PM 12:19

¹⁴ *J. Chen*

PID Feedback Control Simulation: MATLAB

```
figure(1);
plot(time,yd,'r',time,y,'k:','linewidth',2);
xlabel('time(s)');ylabel('yd,y');
legend('Ideal position signal','Position tracking');
figure(2);
plot(time,yd-y,'r','linewidth',2);
xlabel('time(s)'),ylabel('error');
```

Plant	$G(s) = \frac{1}{Js^2 + Bs}$	$\frac{Y(s)}{U(s)} = \frac{1}{Js^2}$	$\frac{1}{Bs} \Rightarrow J \frac{d^2 y(t)}{d^2 t} + Bs$	$3\frac{dy(t)}{dt} = u(t)$
<pre>function dy = u=para;</pre>	<pre>PlantModel(t,y,fla</pre>	ag,para)	$y_1 = y$	
J=0.0067;B=0.	1;		$\frac{dy_1}{dt} = y_2$	
dy=zeros(2,1)	;		dv = R = 1	
dy(1) = y(2);			$\frac{dy_2}{dt} = -\frac{dy_2}{dt}y_2 + \frac{1}{dt}u$	
$dy(2) = -(B/J)*y(2) + (1/J)*u; \qquad dt J = J$				

»M_DigitPID.m & M_Plant.m

(C) 2014 CPSE Lab.

What is SIMULINK

Simulink is an interactive, block-orientated-based tool. It is a block program that allows the simulation and analysis of dynamic systems in a block diagram format whether they are linear or nonlinear, in continuous or discrete forms. It is tightly coupled with MATLAB and supported by Blocksets and Extensions.

¹⁵ J. Chen

(C) 2014 CPSE Lab.

2014/10/12 PM 12:19

¹⁶ J. Chen

» simulink

(C) 2014 CPSE Lab.

¹⁷ J. Chen

EXAMPLE: SIMULINK the Motion of Car

In this example we will demonstrate what Simulink is capable of by simulating the motion of a car. We are interested in analyzing the relationship between the force applied to the car, f, and the resultant velocity, v, of the car.

EXAMPLE: SIMULINK the Motion of Car

Although it is possible to model the above system in Simulink directly, it is simpler if we convert the system into the Laplace domain.

(C) 2014 CPSE Lab.

EXAMPLE: SIMULINK the Motion of Car

We will now find out what happens when we increase the force applied to the car from 0 N to 500 N.

- Sources \rightarrow Step (a step time of 10, an initial value of 0 and a final value of 500.)
- Continuous → Transfer Fcn (the numerator should be equal to [1/50] and the denominator should be [20 1].)
- Sinks \rightarrow Scope

Eile Edit View	Simulation Format Ioo	ls Help 2 🛼 📾 🦫 🛞)	•
Step	> 1/50 20s+1 Transfer Fon	Scope	

EXAMPLE: SIMULINK the Motion of Car

We will now find out what happens when we increase the force applied to the car from 0 N to 500 N.

- Sources → Step (a step time of 10, an initial value of 0 and a final value of 500.)
- Continuous → Transfer Fcn (the numerator should be equal to [1/50] and the denominator should be [20 1].)
- Sinks \rightarrow Scope
- Draw a line from the output of any block to the input of any other block.
- Select Simulation-Simulation Parameters. (In the stop time, enter a value of 100.)
- Double click on the scope block
- click on the play button ()

(C) 2014 CPSE Lab.

EXAMPLE: SIMULINK the Motion of Car

We will now find out what happens when we increase the force applied to the car from 0 N to 500 N.

- Sources → Step (a step time of 10, an initial value of 0 and a final value of 500.)
- Continuous → Transfer Fcn (the numerator should be equal to [1/50] and the denominator should be [20 1].)
- Sinks \rightarrow Scope
- Draw a line from the output of any block to the input of any other block.
- Select Simulation-Simulation Parameters. (In the stop time, enter a value of 100.)
- Double click on the scope block
- click on the play button
- Click on autoscale button to resize the scale to fit the entire range of vales

²¹ J. Chen

The simulink model could have been developed directly from the differential equation in the time domain.

dv

🔄 untitled1

Step

File Edit Simulation Format

Sum

 $m\frac{dv}{dt} + bv = f$

 $m = 1000 \ b = 50$

inertia

b

damping

Integrator

- 0 X

Scope

J. Chen

23

- The inertia and damping are *gain* blocks (located in the math folder). Double-click them, setting the parameter variables (m and b) (I prefer this way for easily checking your model).
- The damping block has been flipped around. To flip a block, right click on it and then select format-flip block from the pull down menu.
- The text for each of the blocks can be edited by simply clicking on the text and entering whatever you like
- The m-file is built up to edit the values of parameters.
- The integration is integration block (locate in the continuous folder). Doubleclick it, setting initial condition to 0 (default value).

(C) 2014 CPSE Lab.

EXAMPLE: SIMULINK the Motion of Car

The simulink model could have been developed directly from the differential equation in the time domain.

- The inertia and damping are *gain* blocks (located in the math folder). Double-click them, setting the parameter variables (m and b) (I prefer this way for easily checking your model).
- The damping block has been flipped around. To flip a block, right click on it and then select format-flip block from the pull down menu.
- The text for each of the blocks can be edited by simply clicking on the text and entering whatever you like
- The m-file is built up to edit the values of parameters.
- The integration is integration block (locate in the continuous folder). Doubleclick it, setting initial condition to 0 (default value).
 (C) 2014 CPSE Lab.

2014/10/12 PM 12:19

The simulink model could have been developed directly from the differential equation in the time domain.

- The inertia and damping are gain blocks (located in the math folder). Double-click them, setting the parameter variables (m and b) (I prefer this way for easily checking your model).
- The damping block has been flipped around. To flip a block, right click on it and then select format-flip block from the pull down menu.
- The text for each of the blocks can be edited by simply clicking on the text and entering whatever you like
- The m-file is built up to edit the values of parameters.
- The integration is integration block (locate in the continuous folder). Doubleclick it, setting initial condition to 0 (default value).

(C) 2014 CPSE Lab.

²⁵ J. Chen

EXAMPLE: SIMULINK the Motion of Car

You can pass the data into the MATLAB workspace using the To Workspace icon

File Edit J	<u>V</u> iew Simulation F <u>o</u> rm	Iools Help	
Step		Image: Stope Stope Stope To Workspace Parameters Variable name: V Image: Stope St	
Ready	92%	ode45 Save format: Array]
		OK Cancel <u>H</u> elp <u>Apply</u>	

EXAMPLE: SIMULINK the Motion of Car

You can pass the data into the MATLAB workspace using the To Workspace icon

(C) 2014 CPSE Lab.

²⁷ J. Chen

Exercise: Single Isothermal CSTR Reactor

(C) 2014 CPSE Lab.

1st tank:
$$V_1 \frac{dC_{A1}}{dt} = F(C_{A0} - C_{A1}) - V_1 k C_{A1}$$

File	Edit	<u>V</u> iew <u>T</u> ext <u>D</u> ebug Bre
D	è	H 6 X fr fr •
1	-	F = 0.085; V1 = 1.05;
2	-	CaOi = 0.925;
3	-	CaOf = 0.925*2;
4	-	k = 0.04;
- 5		internet interneties at 🔹
6	-	Tau1 = V1/(F+V1*k);
7	-	K1 = F/V1;
8	-	Cali = Taul*K1*CaOi;
9		Administrativa Bellina Durbellendervor
10	-	¥2 = 1.05;
11	-	Tau2 = V2/(F+V2*k);
12	-	$K_2 = F/V_2;$
13	-	Ca2i = Tau1*K1*Ca1i;
14		
15	-	Callerm = 0.83

💫 C \Documents and Settings\Administra

» cstr2.mdl

(C) 2014 CPSE Lab.

²⁹ J. Chen

aļ

2

Exercise: Two Isothermal CSTR Reactors

» cstr2.mdl

2014/10/12 PM 12:19

PID Feedback Control Simulation: SIMULINK

(C) 2014 CPSE Lab.

³¹ J. Chen

PID Feedback Control Simulation: SIMULINK

2014/10/12 PM 12:19