李宜珊 Lee, Yi-Shan

  • 學歷:中原大學化工博士
                 中原大學化工碩士
                 中原大學化工學士 

  • 博士論文題目:Enhancing Predictive Capabilities: Innovations in Data-Driven and Cyber-Physics Soft-Sensors for Batch Process Quality Prediction

  • 博士班 113級畢

  • 碩士論文題目:Developing A Novel VAE Monitoring Model Using Multi-Grade & Abnormal Data Information

  • 碩士班 109級畢

發表論文:

  • Y.-S. Lee and J. Chen, A Robust Semi-Supervised Learning Scheme for Development of Within-Batch Quality Prediction Soft-Sensors, Eng. Appl. Artif., 133, 107920, 2024.

  • S. K. Ooi, Y.-S. Lee and J. Chen, Developing a Dynamic Quality Prediction Model for Limited Samples Target Grade Based on Transfer Learning, Measurement, 229, 114380, 2024.

  • Y.-S. Lee and J. Chen, Developing Semi-Supervised Latent Dynamic Variational Autoencoders to Enhance Prediction Performance of Product Quality,Chem. Eng. Sci., 265, 118192, 2023.

  • Y.-S. Lee and J. Chen, Using Source Data to Aid and Build Variational State-Space Autoencoders with Sparse Target Data for Process Monitoring Learning Systems, Neural Networks154, 455-468, 2022.

  • Y. Zhang, Y.-S. Lee, H. Lin, and J. Chen, Establishing Convolutional Neural Network Kalman Recurrent Variational Autoencoder Using Infrared Imaging for Process Monitoring: An Application in Spinning Disc Processes  IEEE Trans. Instrum. Meas.,71, 5001712, 2022.

  • Y.-S. Lee and J. Chen, Augmenting Deviation of Faults from the Normal Using Fault Assistant Gaussian Mixture Prior Variational Autoencoder, J .Taiwan Inst. Chem. Eng., 130, 103921, 2022.

  • X. Wu, J. Chen, L. Xie, Y.-S. Lee, C.-I Chen and H. Su, Application of Convolutional Neural Networks for Multi-Stage Semiconductor Processes, J. Chem. Eng. Japan, 54(8), 449-455, 2021.

  • Z. Li, Y.-S. Lee, Junghui Chen, Y. Qian, Variable Moving Window PLS Models for Long-term NOx Emission Prediction of Coal-fired Power Plants, Fuel, 296, 120441, 2021

  • Y.-S. Lee and J. Chen, Enhancing Monitoring Performance of Data Sparse Nonlinear Processes through Information Sharing among Different Grades Using Gaussian Mixture Prior Variational Autoencoders, Chemometer Intell. Lab., 208, 104219, 2021.

  • Y.-S. Lee, S.-K. Ooi and J. Chen, A Novel Multi-Step Prediction Model for Process Monitoring, the 2023 6th International Symposium on Advanced Intelligent Informatics, Sept. 21-22, 2023, Indonesia.

  • M. Yu, Y.-S. Lee and J. Chen, Fault Diagnosis Based SDG Transfer for Zero-Sample Fault Symptom, the 2023 6th International Symposium on Advanced Intelligent Informatics, Sept. 21-22, 2023, Indonesia.

  • Y.-S. Lee, S.-K. Ooi and J. Chen, Developing Long-term Quality Multistep-ahead Prediction Models for Early Warning, 10th The International Symposium on Design, Operation & Control of Chemical Processes (PSE Asia 2022), Dec. 10-14, 2022, Indian Institute of Technology Madras Campus, Indian.
  • Y.-S. Lee, and J. Chen, Quality Prediction for Nonlinear Dynamic Processes Using Semi-Supervised Soft-sensors: An Application to Ammonia Decarburization Processes, 7th International Symposium on Advanced Control of Industrial Processes (ADCONIP 2022), 7-9 Aug, 2022, UBC Vancouver, Canada. .(Virtual)
  • Y.-S. Lee  and J. Chen, Enhancing Monitoring Performance of Pharmaceutical Processes Using Dual-Attention Latent Dynamic Conditional State-Space Model, 13th Asian Control Conference (ASCC 2022), May 3-7, 2022, Jeju Island, Korea.(Virtual)
  • Y.-S. Lee, O. S. Kit, D. Tanny and J. Chen, Maintaining Soft-Sensor Models Using Latent Dynamic Variational Autoencoders, 11th International Symposium on Advanced Control of Chemical Processes (ADCHEM), June 13-16, 2021, Venice, Italy. (Virtual)
  • Y.-S. Lee and J. Chen, Boosting Monitoring Performance for Nonlinear Processes with Limited Samples Using Gaussian Mixture Latent Distribution in Variational Autoencoders, 9th The International Symposium on Design, Operation & Control of Chemical Processes (PSE Asia 2019), Nov. 4-6, 2020, Taipei. (Virtual)
  • L. L. T. Chan, Y.-S. Lee and J. Chen, Economic Model Predictive Control of CO2 Capture Process Retrofitted with Membrane Units, 6th International Symposium on Process Intensification, Nov. 7-8, 2018, Taipei, Taiwan. (Virtual)
  • Y.-S. Lee, O.-S. Kit, D. Tanny, L. L. T. Chan and J. Chen, Reducing Energy Cost of Absorber-Stripper CO2 Capture Process through Economic Neural Network Model Predictive Control, 6th International Symposium on Process Intensification, Nov. 7-8, 2018, Taipei, Taiwan.