-
深度學習與類神經網路
- (Spring 2018) Class Meeting Times &
Locations: TUE (13:10~16:00, 工419)
- Office hours: MON (12:00~14:00) and WED
(10:00~12:00)
- Course Structure:
- Deep Learning Neural Networks
- (3-13-2018) Understanding Data - Demo some
tools in Python for data exploration
- (3-27-2018) Introductions of Neural Networks,
Network Architectures and Simple Examples
- (4-3-2018) Perceptron Learning
- (4-3-2018) Supervised Hebbian
Learning
- (4-10-2018 & 4-17-2018) Performance Surface & Optimum
Points, Quadratic Function
- (4-17-2018 & 4-24-2018 & 5-8-2018) Performance Optimization
- (5-8-2018 & 5-15-2018) Widrow-Hoff Learning
- (5-15-2018 & 5-22-2018) Backpropagation
Algorithm
- (5-22-2018 & 5-29-2018) Variations on
Backpropagaition Algorithms
- (6-5-2018) Deep Learning Neural Networks
- (6-12-2018) Generalization
- (6-12-2018) Convolutional Neural Networks
- Tools:
- (3-6-2018) Python: Basic
- (3-13-2018) Python: Basic
- (3-27-2018) Python: Equation Solving
- (4-10-2018) Python: Optimization
- (4-17-2018 & 4-24-2018) Python: Dynamic Simulation
- (5-8-2018) Python: Dynamic Model Fitting
- (5-15-2018 & 5-22-2018) Tensorflow Essentials
- (5-22-2018 & 5-29-2018) Linear Regression and Beyond in Tensorflow
- (5-29-2018 & 6-5-2018) Neural Networks in Tensorflow
- (6-12-2018) Convolutional Neural Networks in Tensorflow
- Projects
- Homework
- (3-13-2018) HW#1: Basic Programming in Python &
Regression
- (4-3-2018) HW#2: Optimization & Simple
Learning
Algorithms (Perceptron & Supervised Hebbian Leanings)
- (5-8-2018) HW#3: Model Fitting Based
on First-Principles Models
- (5-29-2018) HW#4: Model Fitting Based on
Historical Data
- (6-5-2018) HW#5: Image Data
Analysis Using CNN & Project
-
Grades