• 深度學習與類神經網路

    • (Spring 2018) Class Meeting Times & Locations: TUE (13:10~16:00, 工419)
    • Office hours: MON (12:00~14:00) and WED (10:00~12:00)
    • Course Structure:
      • Deep Learning Neural Networks
        • (3-13-2018) Understanding Data - Demo some tools in Python for data exploration
        • (3-27-2018) Introductions of Neural Networks, Network Architectures and Simple Examples
        • (4-3-2018)  Perceptron Learning
        • (4-3-2018)  Supervised Hebbian Learning
        • (4-10-2018 & 4-17-2018) Performance Surface & Optimum Points, Quadratic Function
        • (4-17-2018 & 4-24-2018 & 5-8-2018) Performance Optimization
        • (5-8-2018 & 5-15-2018) Widrow-Hoff Learning
        • (5-15-2018 & 5-22-2018) Backpropagation Algorithm
        • (5-22-2018 & 5-29-2018) Variations on Backpropagaition Algorithms
        • (6-5-2018) Deep Learning Neural Networks
        • (6-12-2018) Generalization
        • (6-12-2018) Convolutional Neural Networks
      • Tools:
        • (3-6-2018) Python: Basic
        • (3-13-2018) Python: Basic
        • (3-27-2018) Python: Equation Solving
        • (4-10-2018) Python: Optimization
        • (4-17-2018 & 4-24-2018) Python: Dynamic Simulation
        • (5-8-2018) Python: Dynamic Model Fitting
        • (5-15-2018 & 5-22-2018) Tensorflow Essentials
        • (5-22-2018 & 5-29-2018) Linear Regression and Beyond in Tensorflow
        • (5-29-2018 & 6-5-2018) Neural Networks in Tensorflow
        • (6-12-2018) Convolutional Neural Networks in Tensorflow
      • Projects
    • Homework
      • (3-13-2018) HW#1: Basic Programming in Python & Regression
      • (4-3-2018)   HW#2: Optimization & Simple Learning Algorithms (Perceptron & Supervised Hebbian Leanings)
      • (5-8-2018)   HW#3: Model Fitting Based on First-Principles Models
      • (5-29-2018) HW#4:  Model Fitting Based on Historical Data
      • (6-5-2018) HW#5:  Image Data Analysis Using CNN & Project
    • Grades